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ABSTRACT

Several matrix formulations for the microstrip step dis-
continuity problem are compared. Although they are theo-
retically identical, one of them has a decided advantage in
numerical labor, relative and absolute convergence.

Results by this method are checked with other published
data and with those independently derived by the modified
residue calculus technique.

INTRODUCTION

This paper deals with the microstrip step discontinuity
problem based on the waveguide model. Several papers on
this subject (1,2,3) have presented numerical data. How-
ever, no detailed formulation method is given in these
publications. The objective of the present paper is not to
duplicate these data, but to place some foundations on how
these data should be calculated. It has been known among
researchers that numerical labor and accuracy depend on
the choice of formulation even if several of theoretically
identical formulations exist for a given problem. This is

demonstrated in this paper.

The best formulation is decided based on the matrix size,

relative and absolute convergence, and other numerical
considerations. It turns out to be the one we often choose
without clear reasoning. The data for a microstrip step
discontinuity are compared with available data. They are
also compared with the modified residue calculus technique
which serves as an independent check of the numerical
accuracy.

FORMULATION

The problem under study is the waveguide model for the
microstrip step discontinuity shown in Figure l(a). The

structure is assumed to be symmetrical, and the parallel-
plate waveguide is idealized with magnetic side-walls. For
convenience of analyses, an auxiliary structure is introduced
as in Figure l(b). Only one half of the original structure is
considered because of the symmetry, and the transversal
magnetic wall at the discontinuity is recessed to create a
newregion C. The original structure is recovered by letting
d=O.
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Fig. 1 Waveguide model for microstrip step discontinuity
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The mode-matching procedure begins with expanding the
transverse electric and magnetic fields at the junction in
terms of the normal modes on both sides of the junction.
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For TEnn (n = O, 1, . ..) excitation, we write down the E“
continu~t~ equatioh:

and a corresponding one for Hx.

J

(1)

b.xsa

In equations (l), @ , Pbn, and @c are normaJ modes in
regions A, B, and &’ respectively. %n+ and Bn are give~
inc~dent field coefficients from regions A and B, while An ,
Bn , and Cn are the unknown excited field coefficients in
regions A, B, and C, respectively, Pn is the reflection from

the magnetic wall in region C.

From the modal orthogonality, we obtain the linear simul-
taneous equations for the unknown modal coefficients in
matrix form:

g+ + ~- = G~Q+ + GcJ- (2)

Ya(~+ -S-) = GYd~’~+ - GYdQ (3)

GT(~+ + ~-) = RQ+ + Q- (4)

GTYa(~+ - ~-) = Yd@cJ+ - Yd~- (5)

Where-~+ (An+) and cJ-(Bn-, O) are the excitation terms and
9~(An ) and Q+(Bn+, Cn) are unknowns, Ya and Y are
diagonal matrices with the modal impedances as ‘their
diagonal elements,, Matrix G collects the cross-coupling
coefficients between the modal fields on both sides of the
junction, while matrices ~ and ~’ contain the information on
(1 + Pn) and (1-P ), respectively. All the matrices are
square matrices o~size (MxM~ this requires that K + L = M.

-1 ~GT
When M-oo, we can prove that G . Therefore, equa-
tions (2) and (3) are equivalent to equations (4) and (5). Two
independent vector equations are required to solve for two
unknown vectors. Hence, for four pairs of equations,

{(2),(3)1, {(4),(5)1, \(2),(5)}, and {(3),(4)}, substituting one equa-
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Fig. 2 Classification of formulations

tion into the othe~in the same pair, we have eight ways to
solve for ~- and d . They are define graphically in Figure 2.
The approaches i~dicated by a solid arrow are classified as
the formulations of the first kind and those indicated by a
dashed arrow are of the second kind. Although the eight
ways of solution are theoretically equivalent, their numeri-
cal behaviors are somewhat different, especially when the
magnetic wall is introduced at the upper half of the junction
(d = O,pn = 1).

For general cases pn # +1, all the formulations require a
matrix inversion of size (MxM). For our limiting case of
d .0, special modifications must be taken for some cases.
Specifically, lD and 2B need to invert a (M+ L)x(M+L) matrix
and 2C needs to invert a smaller (KxK) matrix. Hence, 2C
is most attractive to us because of its potential of numeri-
cal efficiency. In the next section, we will examine the
various approaches in terms of the numerical stability and
convergence.

NUMERICAL RESULTS

We have chosen the structural parameters as: a=l 00,
b=26.1, ~1=2.2, <2=2.1. The reflection and transmission
coefficients at the Junction are calculated by varying the
matrix size for different K/M ratios.

Since lD and 2B have an apparent disadvantage in numerical
calculations, they are not considered here. After extensive
studies, we have found that 1A, I B, and lC are numerically
identical. Similarly, 2A and 2D are numerically identical.
Therefore, only three sets of data, corresponding to 1A, 2A,
and 2C, are shown in Figure 3. It is observed that 2A and
2C suffer very little from the relative convergence problem.
The problem is more serious in 1A; the result may converge
to an incorrect value (4,5). The relative convergence effect
can be more readily observed from the plot in Figure 4,
showing the resultant transverse magnetic field at the
junction for various K/L ratios.

A comparative study on the numerical efficiency for dif-
ferent approaches has also been done. In this case, L/K .4,
which is close to c/b, is chosen. The results are evaluated
as a function of the matrix size required and shown in
Figure 5. It is now obvious that 2C has definite advantages
over other approaches. This formulation is to be used for
further studies.

Let us refer back to equations (1) at this point. In many
attempts, E in b.x.a region is not used as Hx. O there. This
choice turn~out to be equal to our preferred choice.

To check the validity of our calculations, we have calcu-
lated the frequency response of a microstrip step discontin-
uity using the same parameters given by Kompa (3). The

!results are shown in Figure 6, which are in good agreement
with Kompa’s results. The small discrepancy is due to the
different formulas used for obtaining the effective width
and dielectric constant of the waveguide model. Further-
more, we have checked the results with those independently
obtained by the modified residue-calculus technique. The
results are shown in Table 1 for comparison. The calcula-
tions are performed using Kompa’s parameters at 2 GHz.
Here we have obtained an agreement down to the fourth
decimal place.
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Fig. 4 Relative convergence problem dernonstrated by
field plots
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Fig. 3 Convergence study for various formulations. (The
ordinate represents the magnitude of the reflection
coefficient for the TEM mode in region A.) Fig. 6 Comparison with Kompa’s results
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TABLE I

Comparison of the results by mode-matching method and by (I)
modified residue calculus technique.

S AA
[001 [001

S BA
[ 001 [001

Mode Matching

0.1837 - j 0.02291

-0.7856 - j0.2227

CONCLUSIONS

Modified
Residue Calculus

0.1837- j 0.02297

-0.7855 + j 0.2233

I he mode-matching method has been applied to analyze the
microstrip step discontinuity problems “based on the wave-
guide model. A comparison has been made among the
various mode-matching solutions based on the matrix size,
relative and absolute convergence. Although they are
theoretically identical, one of them proves to be best
suitable for numerical calculations. The results by this
method are in good agreement with other published data and
with those independently obtained by the modified residue
calculus technique.

(2)

(3)

(4)

(5)
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